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Abstract

In this paper we investigate the effects of an irrotational, viscous pressure on the stability of a liquid jet
into gases and liquids. The analysis extends our earlier work (part 1) in which the stability of the viscous jet
was studied assuming that the motion and pressure are irrotational and the viscosity enters through the
jump in the viscous normal stress in the normal stress balance at the interface. The liquid jet is always unsta-
ble; at high Weber numbers the instability is dominated by capillary instability; at low W the instability is
dominated by Kelvin–Helmholtz (KH) waves generated by pressures driven by the discontinuous velocity.
In the irrotational analysis the viscosity is important but the effects of shear are neglected. In fact a discon-
tinuous velocity is not compatible with the continuity of the tangential components of velocity and shear
stress so that KH instability is not properly posed for exact study using the no-slip condition but some of
the effects of viscosity can be ascertained using viscous potential flow. The theory is called viscous potential
flow (VPF). Here we develop another irrotational theory in which the discontinuities in the irrotational tan-
gential velocity and shear stress are eliminated in the global energy balance by selecting viscous contribu-
tions to the irrotational pressure. These pressures generate a hierarchy of potential flows in powers of the
viscosity, but only the first one, linear in viscosity, in the irrotational viscous stress, is thought to have phy-
sical significance. The tangential velocity and shear stress in an irrotational study cannot be made contin-
uous, but the effects of the discontinuous velocity and stress in the mechanical energy balance can be
0301-9322/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijmultiphaseflow.2005.06.007

* Corresponding author. Tel.: +1 612 626 8000; fax: +1 612 626 1558.
E-mail address: joseph@aem.umn.edu (D.D. Joseph).

mailto:joseph@aem.umn.edu


T. Funada et al. / International Journal of Multiphase Flow 31 (2005) 1134–1154 1135
removed ‘‘in the mean.’’ This theory with the additional viscous pressure is called VCVPF, viscous correc-
tion of VPF. VCVPF is VPF with the additional pressures. The theory here cannot be compared with an
exact solution, which would not allow the discontinuous velocity and stress. In other problems, like capil-
lary instability, in which VCVPF can be compared with an exact solution, the agreements are uniformly
excellent in the wave number when one of the fluids is gas and in good but not uniform, agreement when
both fluids are liquids.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: VCVPF (Viscous correction of viscous potential flow); Kelvin–Helmholtz (KH) instability; Capillary
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1. Introduction

This note is an addendum to the paper ‘‘Stability of a Liquid Jet into Incompressible Gases
and Liquids’’ by Funada et al. (2004). The analysis in that paper is based on viscous potential
flow; the viscosity enters through the viscous term in the normal stress balance and only there.
Another way to use the potential flow to study problems of stability of viscous fluids is
through the dissipation method; the two theories are not the same. The dissipation method
is based on an evaluation of the equation governing the evolution of the energy on fields
u =,/ where $2/ = 0, and only these. The viscosity enters as the coefficient of the dissipation
integral and in the evaluation of certain viscous stress at the boundary. This method has been
applied by Lamb (1932) to compute the decay of water waves due to viscosity, by Levich
(1949) to compute the drag on a spherical gas bubble, by Wang et al. (2005a) to study capil-
lary instability of a liquid cylinder in gas or vacuum and by Wang et al. (2005b) to study the
capillary instability of two fluids, or even two liquids. When the outside fluid is gas or vacuum,
the two fluid formulation gives outstanding results; the growth rate curves are at most a few
percent different than those computed from the exact normal mode theory in which nonslip
conditions are satisfied and the velocity fields are rotational. In the case of the stability of a
liquid jet considered here, we must carry out the analysis with a two-fluid theory. It was shown
by Funada et al. (2004) that the jet is unstable to capillary instabilities when the Weber num-
ber W is very large and Kelvin–Helmholtz waves when the Weber number is very small.
Though capillary instability can occur in vacuum, KH instability cannot; an outside fluid is
required.

The relation between the dissipation method and viscous potential flow (VPF) is of interest. It
was shown by Joseph and Wang (2004) that the two theories could give rise to identical results if
an additional normal stress in the form of a viscous correction of the irrotational pressure was
computed from an algorithm based on the notion that this extra contribution is induced in a thin
boundary layer, not computed and not needed, by the uncompensated irrotational shear stresses
in the precise way indicated by equation (2.5). The theory of the added pressure, which leads to
the same results as the dissipation method is called VCVPF (viscous correction of viscous poten-
tial flow). VCVPF is VPF with the added pressure. In this paper we work out VCVPF for the
stability problem studied using VPF by Funada et al. (2004).
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2. Problem formulation

A long liquid cylinder of density q, viscosity l, and of mean radius amoves with a uniform axial
velocity U relative to an ambient gas (air) of qa, la. With a cylindrical frame (r,h,z) fixed on the
gas, the liquid cylinder is put in the region of 0 6 r < a + g and �1 < z <1, where g = g(h,z, t) is
the interface displacement.

A hierarchy of potential flows may be defined; IFF stands for the potential flow of an inviscid
fluid, VPF stands for the potential flow of a viscous fluid in which the viscosity enters through the
viscous normal stress and is otherwise identical to IPF. VCVPF is a viscous correction to VPF,
which is the same as VPF except that pressure contributions are introduced to remove the effects
of the irrotational tangential velocities and stress in the energy equations.

The mechanical energy equations for the outside and inside fluids are respectively
d

dt

Z
V a

qa

2
juaj2 dV ¼

Z
X
½ua � Ta � n2�dX�

Z
V a

2laDa : Da dV

¼ �
Z
X
½ua � n1ð�pa þ snaÞ þ ua � tssa�dX�

Z
Va
2laDa : DadV ; ð2:1Þ

d

dt

Z
V l

ql

2
julj2 dV ¼

Z
X
½ul � Tl � n1�dX�

Z
V l

2llDl : DldV

¼
Z
X
½ul � n1ð�pl þ snl Þ þ ul � tssl�dX�

Z
V l

2llDl : DldV ; ð2:2Þ
where n1 = �n2 is the outward normal vector to the surface X.
With the continuity of the normal velocity
ua � n1 ¼ ul � n1 ¼ un; ð2:3Þ
the sum of (2.1) and (2.2) can be written as
d

dt

Z
V a

qa

2
juaj2 dV þ d

dt

Z
Vl

ql

2
julj2 dV ¼

Z
X
½unð�pl þ snl þ pa � snaÞ þ ul � tssl � ua � tssa�dX

�
Z
V a

2laDa : Da dV �
Z
V l

2llDl : DldV . ð2:4Þ
To obtain a purely irrotational theory for the stability of the jet, we evaluate (2.3) and (2.4) on
u = $/. The shear stress and tangential component of velocity cannot be made continuous at
r = a + g but these conditions can be satisfied ‘‘in the mean’’ by the introduction of two pressure
corrections ptl and pta such that
pl ¼ pil þ ptl ; pa ¼ pia þ pta;
where pi is the pressure given by Bernoulli equation (the same pressure you get from potential flow
of an inviscid fluid). Hence
Z

X
unð�ptl þ ptaÞdX ¼

Z
X
ðul � tssl � ua � tssaÞdX. ð2:5Þ
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Joseph and Wang (2004) showed that in linearized problems, the governing equation for the
pressure corrections is
r2pt ¼ 0. ð2:6Þ
Eqs. (2.5) and (2.6) can be satisfied uniquely, as we show in the next section. For now, it will
suffice to note that ptl , p

t
a are proportional to ll and la and
ql
outl
ot

þ U
outl
oz

� �
¼ llr2utl �rptl ; ð2:7Þ

qa
outa
ot

¼ lar2uta �rpta. ð2:8Þ
We can find potential flow solutions of (2.7) and (2.8), r2/t ¼ r2/t
a ¼ 0, such that
utl ¼ r/t; uta ¼ r/t
a; ð2:9Þ
where
ql
o/t

ot
þ U

o/t

oz

� �
¼ �ptl ; ð2:10Þ

qa
o/t

a

ot
¼ �pta ð2:11Þ
and
o/t

or
� U

ogt

oz
¼ o/t

a

or
; ð2:12Þ
where gt is a viscous correction to g and /t is proportional to ll and /t
a is proportional to la.

The viscous corrections may now be inserted into (2.4). They give rise to uncompensated shear
stress proportional to the square of the viscosities which may be removed by new pressure correc-
tions now proportional to the square of viscosities. In this we may generate, successively, irrota-
tional solutions proportional to increasing powers of viscosity.

Though these higher order viscous irrotational contributions vanish rapidly at higher Reynolds
numbers, we believe that only the first pressure contribution is of physical significance.
3. Irrotational theory

The governing Navier–Stokes equations and interface conditions for disturbances of the
cylinder and gas are made dimensionless with the following scales:
½length; velocity; time; pressure� ¼ 2a;U ;
2a
U

;qU 2

� �
. ð3:1Þ
In terms of this normalization, we may define Weber number W, Reynolds number R, density
ratio ‘ and viscosity ratio m:
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W ¼ c

q2aU 2
; R ¼ U2a

m
; ‘ ¼ qa

q
; m ¼ la

l
; ð3:2Þ
where c is the surface tension coefficient, m = l/q, ma = la/qa and m/‘ = ma/m. The azimuthal mode
is denoted by n; the n = 0 mode is axisymmetric and the n > 0 mode is asymmetric.

This problem for n = 0 is a combination of capillary instability and Kelvin–Helmholtz instabi-
lity. When W = 0 (c = 0) the instability is generated by the velocity difference. An interesting fea-
ture of this instability is that even though the density and viscosity of the gas is much smaller than
the liquid, the dynamical effects of the gas cannot be neglected. The relevant physical quantity is
the kinematic viscosity m = l/q; Funada and Joseph (2001) found that the stability limit for vis-
cous potential flow is nearly independent of the viscosity when ml > ma, with a sensible dependence
when ml < ma, for small viscosities, the opposite of what intuition would suggest. Essentially the
same result holds for Kelvin–Helmholtz of liquid jet, studied here. The other limit W !1 or
U! 0 leads to capillary instability which was studied using viscous potential flow, by Funada
and Joseph (2002). Our scaling fails when U tends to zero; in the case the scale velocity is c/l,
which is the characteristic velocity for capillary collapse and the relevant Reynolds number is
J = qc2a/l2. The basic flow in dimensionless coordinates is (oU/oz,oUa/oz) = (1,0) in terms of
the velocity potential U and Ua.

3.1. Governing equation

For the liquid cylinder in a disturbed state ð0 6 r < 1=2þ g and �1 < z <1), the velocity
potential / � /(r,h,z, t) of an asymmetric disturbance satisfies the Laplace equation:
o2

or2
þ 1

r
o

or
þ 1

r2
o2

oh2
þ o2

oz2

� �
/ ¼ 0 ð3:3Þ
and the Bernoulli equation:
o/
ot

þ o/
oz

þ 1

2

o/
or

� �2

þ 1

2

1

r
o/
oh

� �2

þ 1

2

o/
oz

� �2

þ p ¼ f ðtÞ; ð3:4Þ
where p � p(r,h,z, t) is the pressure, and f(t) is an arbitrary function of time t which may be put to
zero. For the gas disturbance of infinite extent ð1=2þ g < r < 1 and �1 < z <1), the velocity
potential /a � /a(r,h,z, t) satisfies the equations:
o2

or2
þ 1

r
o

or
þ 1

r2
o2

oh2
þ o2

oz2

� �
/a ¼ 0; ð3:5Þ

‘
o/a

ot
þ 1

2

o/a

or

� �2

þ 1

2

1

r
o/a

o/

� �2

þ 1

2

o/a

oz

� �2
" #

þ pa ¼ faðtÞ. ð3:6Þ
The kinematic condition at the interface r = 1/2 + g is given for each fluid by
og
ot

þ og
oz

þ 1

ð1=2þ gÞ2
o/
oh

og
oh

þ o/
oz

og
oz

¼ o/
or

;
og
ot

þ 1

ð1=2þ gÞ2
o/a

oh
og
oh

þ o/a

oz
og
oz

¼ o/a

or
ð3:7Þ
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and the normal stress balance at r = 1/2 + g is given by
p � pa �
1

R
sþ m

R
sa ¼ �W 2� 1þ og

oz

� �2
" #

1

1=2þ g
� 1

ð1=2þ gÞ2
o2g

oh2

 !"

þ 1þ 1

1=2þ g
og
oh

� �2
" #

o2g
oz2

� 2
og
oh

1

ð1=2þ gÞ3
og
oh

"

þ 1

ð1=2þ gÞ2
og
oz

o2g
ohoz

##,
1þ 1

1=2þ g
og
oh

� �2

þ og
oz

� �2
" #3=2

; ð3:8Þ
where the pressures at the interface are expressed by (3.4) and (3.6), and s and sa denote the
normal viscous stresses acting on the interface:
s ¼ 2
o2/
or2

� 1

1=2þ g
og
oh

2

r
o2/
oroh

� 2

r2
o/
oh

� �
� og

oz
2
o2/
oroz

"

þ 1

1=2þ g
og
oh

� �2
1

r2
o2/

oh2
þ 1

r
o/
or

� �
þ 1

1=2þ g
og
oh

og
oz

2

r
o2/
ohoz

þ og
oz

� �2
o2/
oz2

#

� 1þ 1

1=2þ g
og
oh

� �2

þ og
oz

� �2
" #�1

; ð3:9Þ

sa ¼ 2
o2/a

or2
� 1

1=2þ g
og
oh

2

r
o2/a

oroh
� 2

r2
o/a

oh

� �
� og

oz
2
o2/a

oroz

"

þ 1

1=2þ g
og
oh

� �2
1

r2
o2/a

oh2
þ 1

r
o/a

or

� �
þ 1

1=2þ g
og
oh

og
oz

2

r
o2/a

ohoz
þ og

oz

� �2
o2/a

oz2

#

� 1þ 1

1=2þ g
og
oh

� �2

þ og
oz

� �2
" #�1

. ð3:10Þ
For a case of the interface displacement small compared with the mean radius, (3.7)–(3.10) may be
expanded around r = 1/2 to give a linear system of boundary conditions for small disturbances.
We do not require the continuity of tangential velocity and shear stress. The other conditions are
that the liquid velocity is finite at the center r = 0, and the gas velocity should vanish as r !1.

3.2. Dispersion relation

The potentials / and /a are determined by the Laplace equation; $2/ = 0 in 0 6 r < 1/2 and
$2/a = 0 in 1/2 < r, in terms of cylindrical frame (r,h,z). The solutions and the surface displace-
ment g are of the form
/ ¼ AlInðkrÞE þ c.c.; /a ¼ AaKnðkrÞE þ c.c.; g ¼ AE þ c.c.; ð3:11Þ

where A, Al and Aa are the complex amplitudes, E � exp(ikz + inh � ixt), x � xR + ixI denotes
the complex angular frequency, k the real wave number, n is the azimuthal mode and c.c. stands
for the complex conjugate of the preceding expression; In(kr) and Kn(kr) denote the nth order of
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modified Bessel functions of the first and second kind, and the prime denotes the derivative:
I 0nðkrÞ ¼ dInðkrÞ=dðkrÞ. Then / gives the finite velocity at r = 0 and the velocity $/a vanishes as
r! 1. The solutions satisfy the kinematic conditions at r = 1/2
og
ot

þ og
oz

¼ o/
or

;
og
ot

¼ o/a

or
; ð3:12Þ
in which (3.11) is substituted to give
Al ¼
�iðx� kÞ
kI 0nðk=2Þ

A; Aa ¼
�ix

kK 0
nðk=2Þ

A. ð3:13Þ
To form the normal stress balance we must first solve equation (2.6). We obtain the two
pressure corrections
� pml ¼
X1
j¼0

C0
jiIn

2p
k
jr

� �
exp i

2p
k
jz� ixt þ inh

� �
; ð3:14Þ

� pma ¼
X1
j¼0

D0
jiKn

2p
k
jr

� �
exp i

2p
k
jz� ixt þ inh

� �
; ð3:15Þ
where C0
j and D0

j are constants to be determined, j is an integer and k is the period in the z-direc-
tion. Suppose 2pj0=k ¼ k; C0

j0
¼ Ck and D0

j0 ¼ Dk, then the two pressure corrections can be
written as
� pml ¼ CkiInðkrÞ expðikz� ixt þ inhÞ þ
X
j6¼j0

C0
jiIn

2p
k
jr

� �
exp i

2p
k
jz� ixt þ inh

� �
; ð3:16Þ

� pma ¼ DkiKnðkrÞ expðikz� ixt þ inhÞ þ
X
j6¼j0

D0
jiKn

2p
k
jr

� �
exp i

2p
k
jz� ixt þ inh

� �
; ð3:17Þ
With the pressure corrections, the normal stress balance has the following form:
pia þ pma � pil � pml þ
2

R
o2/
or2

� 2m
R

o2/a

or2
¼ �W ðk2 þ 4n2 � 4Þg; ð3:18Þ
which gives rise to
‘iAaxKnðk=2Þ � iAlðx� kÞInðk=2Þ � iDkKnðk=2Þ þ iCkInðk=2Þ þ
2k2

R
AlI 00nðk=2Þ

þ 2mk2

R
AaK 00

nðk=2Þ þ
X
j 6¼j0

C0
jiIn

p
k
j

� �
� D0

jiKn
p
k
j

� �h i
exp i

2p
k
jz� ixt þ inh

� �

¼ � iAlk
x� k

W ðk2 þ 4n2 � 4ÞI 0nðk=2Þ. ð3:19Þ
By orthogonality of the Fourier series, we obtain
‘AaxKnðk=2Þ � Alðx� kÞInðk=2Þ � DkKnðk=2Þ þ CkInðk=2Þ

� i
2k2

R
AlI 00nðk=2Þ � i

2mk2

R
AaK 00

nðk=2Þ ¼ � Alk
x� k

W ðk2 þ 4n2 � 4ÞI 0nðk=2Þ ð3:20Þ
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and
C0
jIn

p
k
j

� �
� D0

jKn
p
k
j

� �
¼ 0 when j 6¼ j0. ð3:21Þ
Eq. (3.20) replaces the normal stress balance and can be solved for the growth rate x. However,
the undetermined part CkIn(k/2) � DkKn(k/2) has to be computed from (2.5) before we can solve
(3.20). Substitution of (3.16), (3.17) and (3.21) into the left hand side of (2.5) gives rise to
Z

X

�unð�ptl þ ptaÞdX ¼
Z 2p

o

1

2
dh
Z zþk

z
�unð�ptl þ ptaÞdz

¼ pk½�AlCkInðk=2ÞI 0nðk=2Þ � �AaDkKnðk=2ÞK 0
nðk=2Þ� ikE�E; ð3:22Þ
where �un is the conjugate of un. The right hand side of (2.5) can be evaluated
Z
X
½ðul � tÞssl � ðua � tÞssa�dX ¼ pk

2

R
�AlAlInðk=2ÞI 0nðk=2Þ �

2m
R

�AaAaKnðk=2ÞK 0
nðk=2Þ

� �
k3E�E.

ð3:23Þ

Combining (3.22) and (3.23), we obtain
�AlCkiInðk=2ÞI 0nðk=2Þ � �AaDkKnðk=2ÞK 0
nðk=2Þ

¼ 2

R
�AlAlk

2Inðk=2ÞI 0nðk=2Þ �
2m
R

�AaAak
2Knðk=2ÞK 0

nðk=2Þ. ð3:24Þ
Substitution of (3.13) into (3.24) leads to
Ck ¼ � 2i

R
k2Al; Dk ¼ � 2im

R
k2Aa. ð3:25Þ
Inserting (3.13) and (3.24) into (3.20), we obtain the dispersion relation
ðx� kÞ2a‘n þ ‘x2aan þ i
2k2

R
ðx� kÞðb‘n þ a‘nÞ þ i

2mk2

R
xðban þ aanÞ � W ðk2 þ 4n2 � 4Þk ¼ 0;

ð3:26Þ
where a‘n, aan, b‘n and ban are defined as
a‘n ¼
Inðk=2Þ
I 0nðk=2Þ

; aan ¼ �Knðk=2Þ
K 0

nk=2
; b‘n ¼

I 00nðk=2Þ
I 0nðk=2Þ

; ban ¼ �K 00
nðk=2Þ

K 0
nðk=2Þ

. ð3:27Þ
4. Dissipation calculation for capillary and KH instability

The dissipation method is a way to include viscous effects into solutions assuming potential
flows. Joseph and Wang (2004) showed that VCVPF and dissipation method give the same results
in a few problems involving free surfaces, such as the drag force on a spherical or oblate ellipsoi-
dal gas bubble, and the decay rate of free gravity waves on water. Wang et al. (2005b) showed that
the dissipation calculation gives the same growth rates as VCVPF for capillary instability
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involving a gas and a viscous fluid. Here we extend the dissipation calculation to capillary insta-
bility of two viscous fluids.

The sum of the mechanical energy equations of the interior and exterior fluids can be written as
Z
V a

‘

2

o

ot
juaj2 dV þ

Z
V l

1

2

o

ot
þ o

oz

� �
julj2 dV

¼
Z
X
½unð�pl þ snl þ pa � snaÞ þ ul � tssl � ua � tssa þ ul � bsbl � ua � bsba�dX

�
Z
V a

2m
R

Da : Da dV �
Z
V i

2

R
Dl : DldV . ð4:1Þ
We assume that the normal stress balance
pa � sna � pl þ snl ¼ W
o2g
oz2

þ 4
o2g

oh2
þ 4g

� �
ð4:2Þ
and the continuity of the tangential velocity and stress
ssa ¼ ssl ¼ ss; ua � t ¼ ul � t ¼ us; sba ¼ sbl ¼ sb; and ua � b ¼ u‘ � b ¼ ub; ð4:3Þ

are all satisfied at the interface. At the same time, the flow in the bulk of the fluids are approxi-
mated by potential flow, for which the following identity can be easily proved
Z

V
2D : DdV ¼

Z
X
n � 2D � udX; ð4:4Þ
where X is the surface of V and n is the unit normal pointing outward. Inserting (4.2)–(4.4) into
(4.1), we obtain
Z

V a

‘

2

o

ot
juaj2 dV ¼

Z
V l

1

2

o

ot
þ o

oz

� �
julj2 dV

¼
Z
X
unW

o2g
oz2

þ 4
o2g

oh2
þ 4g

� �
dX

þ m
R

Z
X
n1 � 2Da � uadX� 1

R

Z
X
n1 � 2Dl � uldX. ð4:5Þ
The integrals in (4.5) are evaluated
Z
V l

1

2

o

ot
þ o

oz

� �
julj2 dV ¼

Z 2p

0

dh
Z zþk

z

Z 1
2

0

1

2

o

ot
þ o

oz

� �
julj2rdrdz

¼ 1

2
jA1j2pkkInðk=2ÞI 0nðk=2Þðrþ �rÞ expðrþ �rÞt; ð4:6ÞZ

V a

‘

2

o

ot
juaj2 dV ¼

Z 2p

0

dh
Z zþk

z

Z 1

1
2

‘

2

o

ot
juaj2rdrdz

¼ 1

2
‘jB1j2pkkKnðk=2ÞK 0

nðk=2Þðrþ �rÞ expðrþ �rÞt; ð4:7Þ
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Z
X
W

o2g
oz2

þ 4
o2g

oh2
þ 4g

� �
uldX ¼ jA1j2pkW

k2

r
I 02n ðk=2Þð4� 4n2 � k2Þ expðrþ �rÞt; ð4:8Þ

1

R

Z
X
n1 � 2Dl � uldX ¼ 2

R
jA1j2pkk3I 0nðk=2Þ 2Inðk=2Þ �

I 0nðk=2Þ
k=2

� �
expðrþ �rÞt; ð4:9Þ

m
R

Z
X
n1 � 2Da � ua dX ¼ 2m

R
jA1j2pkk3K 0

nðk=2Þ 2Knðk=2Þ þ
K 0

nðk=2Þ
k=2

� �
expðrþ �rÞt. ð4:10Þ
Inserting (4.6)–(4.10) into (4.5), we obtain
ða‘n þ ‘aanÞ
rþ �r
2

þ 2k2

R
b‘n þ a‘nð Þ þ m ban þ aanð Þ½ � ¼ W 4� 4n2 � k2

� � k
r
; ð4:11Þ
where a‘n, aan, b‘n and ban are defined in (3.27). If we assume that r is real, (4.11) is the same as the
dispersion relation (3.26) from the VCVPF solution. In the range 0 < k 6 1/R = 2 whenW�1 = 0,
r is real and our assumption is satisfied. Therefore, the growth rate computed by the dissipation
calculation is the same as that computed by the VCVPF.
5. Small and large wave number defined by the asymptotic expansion of Bessel functions

We first note that the Bessel functions in our dispersion equation (3.26) appear only in the
ratios a‘n, aan, b‘n, ban which are functions of k and n as shown in (3.27). In small k expansion,
the leading terms for these expressions are
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a‘0 ¼ � I0ðxÞ
I 00ðxÞ

¼ 2

x
þOðxÞ; a‘1 ¼

I1ðxÞ
I 01ðxÞ

¼ xþOðx3Þ; ð5:1Þ

aa0 ¼ �K0ðxÞ
K 0

0ðxÞ
¼ ð�cþ logð2Þ � logðxÞÞxþOðx3Þ; aa1 ¼ �K1ðxÞ

K 0
1ðxÞ

¼ xþOðx3Þ; ð5:2Þ

ba0 ¼ � I 000ðxÞ
I 00ðxÞ

¼ 1

x
þOðxÞ; b‘1 ¼

I 001ðxÞ
I 00ðxÞ

¼ 3x
4
þOðx3Þ; ð5:3Þ

ba0 ¼ �K 00
0ðxÞ

K 0
0ðxÞ

¼ 1

x
þOðxÞ; ba1 ¼ �K 00

1ðxÞ
K 0

1ðxÞ
¼ 2

x
þOðxÞ; ð5:4Þ
where c = 0.577216 is Euler�s constant and x = k/2. This small k expansions give good represen-
tations of the ratios when k < 2 (see Fig. 1). The graphs of these Bessel function ratios lead to one
when k is large independent of n and are very nearly one for k > 2.
6. Properties of the dispersion relation

For brevity we denote as
B‘n ¼ b‘n þ a‘n; Ban ¼ ban þ ban; ð6:1Þ
which reminds us of VPF when B‘n = b‘n and Ban = ban. The dispersion relation is then expressed
in the quadratic equation in x = xR + ixI
Dðk;xÞ ¼ c2x2 þ 2c1xþ c0 ¼ 0 ! ðc2xþ c1Þ2 ¼ c21 � c2c0; ð6:2Þ
where
c2 ¼ a‘n þ ‘aan; ð6:3Þ

c1 ¼ �ka‘n þ i
k2

R
ðB‘n þ mBanÞ ¼ C1R þ ic1I ; ð6:4Þ

c0 ¼ k2a‘n � i
2k3

R
B‘n � W ðk2 þ 4n2 � 4Þk ¼ c0R þ ic0I . ð6:5Þ
Putting as
c2xþ c1 ¼ c2ðxR þ ixIÞ þ c1R þ ic1I ¼ X þ iY ; ð6:6Þ
we have
ðX þ iY Þ2 ¼ X 2 � Y 2 þ 2iXY ¼ ðC1R þ ic1IÞ2 � c2ðc0R þ ic0IÞ
¼ c21R � c21I � c2c0R þ ið2c1Rc1I � c2c0IÞ;
then
X 2 � Y 2 ¼ c21R � c21I � c2c0R; 2XY ¼ 2c1Rc1I � c2c0I . ð6:7Þ
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Thus the equation for X = c2xR + c1R is given by the quadratic in X2
X 2 �
ðc1Rc1I � c2c0I=2Þ2

X 2
¼ c21R � c21I � c2c0R ð6:8Þ
and the equation for Y = c2xI + c1I is given by the quadratic in Y2
ðc1Rc1I � c2c0I=2Þ2

Y 2
� Y 2 ¼ c21R � c21I � c2c0R. ð6:9Þ
6.1. Cut-off wave number k = kc

All waves with k > kc are damped. Moreover kc is independent of R; it depends on W�1, ‘ and
m. k = kc is a root of xI = 0 for which Y = c1I, we have
ðc1Rc1I � c2c0I=2Þ2

c21I
� C2

1I ¼ c21R � c21I � c2c0R ! �c1Rc1Ic0I þ
1

4
c2c20 þ c21Ic0R ¼ 0; ð6:10Þ
which is then arranged as
k6

R2
‘aanðb‘n þ a‘nÞ2 þ m2a‘nðban þ aanÞ2
h i

� ðb‘n þ a‘nÞ½
	

þmðban þ aanÞ�2
W
k
ðk2 þ 4n2 � 4Þ



¼ 0; ð6:11Þ
thus we have the equation to the cut-off wave number k = kc for VCVPF
W �1 ¼ ðb‘n þ a‘nÞ þ mðban þ aanÞ½ �2

‘aanðb‘n þ a‘nÞ2 þ m2a‘nðban þ banÞ
2

1

k
ðk2 þ 4n2 � 4Þ ð6:12Þ
and for VPF
W �1 ¼ ðb‘n þ mbanÞ
2

‘aanb
2
‘n þ m2a‘nb

2
ank

1

k
ðk2 þ 4n2 � 4Þ. ð6:13Þ
In 0 < k < kc instability may arise, for which the maximum growth rate xIm can be defined by
xIm ¼def MaxðxIðkÞÞ with the associated wave number km. We are km < 2 for which the small k
expansions are uniformly valid. Since km < kc, the validity can be expected when kc is not too
much larger than 2. Eqs. (6.12) and (6.13) show that kc is not much larger than 2 when
W�1 < 10,000 and kc � 2 or kc < 2 when W�1 < 1000 (see Fig. 2).

For k > 10 for which a‘n, aan, b‘n, ban = 1, we have the following asymptotic relation of W�1

and kc for both VPF and VCVPF:
W �1 ¼ ð1þ mÞ2

‘þ m2

1

k
ðk2 þ 4n2 � 4Þ � ð1þ mÞ2

‘þ m2
k ! W �1 ¼ ð1þ mÞ2

‘þ m2
kc. ð6:14Þ
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6.2. Large k expansion of the dispersion relation

The term c21 � c2c0 in (6.2) is arranged as
c21 � c2c0 ¼ �‘k2a‘naan �
k4

R2
ðB‘n þ mBanÞ2 þ

i2k3

R
ð‘aanB‘n � ma‘nBanÞ

þ ða‘n þ ‘aanÞW ðk2 þ 4n2 � 4Þk; ð6:15Þ
which is real in a special case that (‘aanB‘n � ma‘nBan) = 0.
When k > 10, KH instability dominates and Eq. (6.1) shows that
B‘n ¼ Ban ¼ 1 for VPF;

B‘m ¼ Bam ¼ 1 for VCVPF.
ð6:16Þ
Eq. (6.16) shows that the dispersion relation for VPF at a Reynolds number R is the same as for
VCVPF at a Reynolds number 2R. The solution X + iY in (6.6)–(6.9) is
X ¼ c2xR þ c1R ¼ �R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 � c2c0

q	 

; Y ¼ c2xI þ c1I ¼ �I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 � c2c0

q	 

. ð6:17Þ
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When ‘ = m in (6.17) and the discriminant is not negative, xI and xR can be expressed as
Fig. 3
VCVP
k > 10
size d
xI þ
k2
R

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘k2

ð1þ ‘Þ2
þ k4

R2
� W

ðk2 þ 4n2 � 4Þk
ð1þ ‘Þ

s
; xR ¼ k

1þ ‘
for VPF ; ð6:18Þ

xI þ
2k2

R
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘k2

ð1þ ‘Þ2
þ 4k4

R2
� W

ðk2 þ 4n2 � 4Þk
ð1þ ‘Þ

s
; xR ¼ k

1þ ‘
for VCVPF . ð6:19Þ
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If there holds an extremum condition that oxi/ok = 0, (6.19) for VCVPF gives
Fig. 4
instab
Fig. 3
small
4k
R

xI þ
2k2

R

� �
¼ 2‘k

ð1þ ‘Þ2
þ 16k3

R2
� W

ð3k24n2 � 4Þ
ð1þ ‘Þ ; ð6:20Þ
which together with (6.19) leads to the maximum growth rate xI(km) at k = km. Fig. 3 shows for
the axisymmetric disturbances (n = 0) that the capillary instability occurs in 0 <W1 < 104, while
the KH instability in W1 > 104 where km increases with W�1.
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6.3. Small k expansion of the dispersion relation

Using (5.1)–(5.4), the dispersion relation is given in small k; for VPF
Dðk;x; n ¼ 0Þ ¼ ðx� kÞ2 4
k
þ ‘x2 �cþ logð2Þ � log

k
2

� �� �
k
2

þ i
2k2

R
ðx� kÞ 2

k
þ i

2mk2

R
x
2

k
� W ðk2 � 4Þk ¼ 0; ð6:21Þ

Dðk;x; n ¼ 1Þ ¼ ðx� kÞ2 k
2
þ ‘x2 k

2
þ i

2k2

R
ðx� kÞ 3

8
k þ i

2mk2

R
x
4

k
� Wk3 ¼ 0 ð6:22Þ
and for VCVPF
Dðk;x; n ¼ 0Þ ¼ ðx� kÞ2 4
k
þ ‘x2 �cþ logð2Þ � log

k
2

� �� �
k
2
þ i

2k2

R
ðx� kÞ 6

k

þ i
2mk2

R
x

2

k
þ �cþ logð2Þ � log

k
2

� �
k
2

� �" #
� W ðk2 � 4Þk ¼ 0; ð6:23Þ

Dðk;x; n ¼ 1Þ ¼ ðx� kÞ2 k
2
þ ‘x2 k

2
þ i

2k2

R
ðx� kÞ 7k

8
þ i

2mk2

R
x

4

k
þ k
2

� �
� Wk3 ¼ 0. ð6:24Þ
Fig. 4 shows for the asymmetric disturbances (n = 1) that the KH instability occurs in W�1 > 2
where km stays less than unity. This km about 100 times smaller than km for n = 0 in Fig. 3, makes
xIm 100 times larger than that for n = 0; long drops may arise due to this KH instability. The
small km and xIm for the asymmetric disturbances (n = 1) can be evaluated well using the small
k expansion of the dispersion relation shown above.
7. Large Reynolds number R > 100

We get inviscid flow, n = 0 is the only unstable mode, xI depends on W�1 and l. There is a criti-
cal value W �1

c ðlÞ given by (7.6) at the cut-off wave number kc = 2, which gives a border between
capillary instability and KH instability (see Fig. 5). When k < 2, we have W�1(‘) such that
W �1ð‘Þ < ~W
�1

c ð‘Þ; ð7:1Þ

the flow is dominated by capillary instability. When k > 2, W�1(‘) is
W �‘ð‘Þ > ~W
�1

c ð‘Þ; ð7:2Þ

the flow is dominated by KH instability.

7.1. Inviscid case

The dispersion relation for k > 10 and any n (n = 0, 1) is approximated as
ð1þ ‘Þx2 � 2kxþ k2 �Wk3 ¼ 0; ð7:3Þ
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for which the solution is given by
x ¼ xR þ ıxI ¼
k

1þ ‘
� ı

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘k2

ð1þ ‘Þ2
� Wk3

1þ ‘

s
; ð7:4Þ
thus
xR ¼ k
1þ ‘

; xI ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘k2

1þ ‘2
� Wk3

1þ ‘

s
. ð7:5Þ
The growth rate xI is put to zero to give the cut-off wave number kc
xI ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘k2

ð1þ ‘Þ2
� Wk3

1þ ‘

s
¼ 0 ! kc ¼

‘

1þ ‘
W �1. ð7:6Þ
The external value of growth rate should satisfy
ox2
I

ok
¼ ‘2k

ð1þ ‘Þ2
� Wk3

1þ ‘
¼ 0 ! k ¼ 0; k ¼ 2

3

‘

1þ ‘
W �1 ¼ km; ð7:7Þ
hence the external value xIm is given by
xIm ¼ xIðkmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘k2m

ð1þ ‘Þ2
� Wk3

1þ ‘

s
¼ 2

3
ffiffiffi
3

p ‘
ffiffi
‘

p

ð1þ ‘Þ2
W �1. ð7:8Þ
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For the large k expansion (k > 10), xIm is given by (7.8), km is given by (7.7) and kc is given by
(7.6).

7.2. kc in inviscid case

In Fig. 6, we have plotted kc versus W
�1 for IPF and identified a unique point of intersection

W �1
� ðlÞ of the instability modes for n = 0 and n = 1. The KH instability dominates when W�1 is
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greater than the intercept point W �1
� ðlÞ and KH instability dominates when W�1 is below this

point. W �1
� (l) decreases as l increases.

7.3. KH instability for large R

Setting as W�1 = 104 where KH instability dominates, xIm and km change with increasing R, as
in Figs. 7 and 8. VCVPF and VPF show that the viscous effects arise remarkably at small R and
disappear as R becomes large. It is noted that the n = 1 mode dominates in R < 100.
8. Comparison of VPF and VCVPF

The analysis of stability of a liquid jet given by Funada et al. (2004) was based on viscous po-
tential flow (VPF) without an additional viscous pressure correction (VCVPF). Previous studies
on related problems have shown that VCVPF is in excellent agreement with exact solutions.
We recommend VCVPF for stability analysis in the problem studied here.

We have already shown that the difference between VPF and VCVPF vanishes in the inviscid
limit (practically for R > 100). The difference between the two theories also vanishes when KH
instability is very dominant (large value of W�1) and are sensible when capillary instability
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dominants (W�1 is small). When capillary instability dominates (W�1 < 1000) the normalized
growth discrepancy
x1
I ðk1m;VPFÞ � x2

I ðk2m;VCVPFÞ
x1

I ðk1m;VPFÞ
� Oð1=2Þ. ð8:1Þ
9. Conclusions

The stability of a liquid jet into viscous incompressible gases and liquids is studied. The analysis
assumes that the motion of the fluids is irrotational. In our previous theory (VPF) the viscous
component of the normal stress is evaluated on the potential flows (Funada et al. (2004)). Here
we construct a new irrotational theory in which the discontinuities of the irrotational tangential
velocity and shear stress in the power of traction integrals in the evolution of energy equations is
eliminated by the selection of two viscous contributions to the pressure. VCVPF is VPF with
pressure corrections. The main results are as follows:

(1) The dispersion relation for VCVPF is the same as the one that arises from the dissipation
method.
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(2) The variation of the growth rate curves with the Weber and Reynolds number and the den-
sity and viscosity ratio are similar for VPF and VCVPF but the values can be different.

(3) The dispersion relations differ from those which arise in the study of capillary instability in
terms involving the uniform base flow velocity difference U = Ui � Ua.

(4) The problem here must be treated as a two fluid problem even when one fluid is gas, because
Kelvin–Helmholtz instability cannot occur in a vacuum.

(5) In both theories the problem is dominated by the Kelvin–Helmholtz instability when the
Weber number is small and by capillary instability when it is large.

(6) The flow is always unstable to wave numbers smaller than a cut-off wave number which
increases from a small value for Capillary instability to much larger values for Kelvin–Helm-
holtz instability. The cut-off wave number is nearly the same for VPF and VCVPF for small
Weber numbers and is independent of the Reynolds number.

(7) Asymptotic formulas of the dispersion relation for small and large wave numbers have been
derived and the regions of applicability of these formulas evaluated. The division between
large and small wave numbers is rather sharply defined by Bessel functions in the dispersion
relation and is independent of the stability parameters.

(8) The differences between VPF and VCVPF are substantial when the Reynolds number is
small and the Weber number is large.

(9) The relation between the symmetric mode of instability n = 0 and the first asymmetric mode
for n = 1 is as in the paper by Funada et al. (2004) with n = 1 dominant only for small
Reynolds numbers; the axisymmetric mode is always dominant for capillary instability
and for Kelvin–Helmholtz instability for large Reynolds numbers.

(10) The difference between VPF and VCVPF vanishes in the inviscid limit (practically for
R > 100) and when Kelvin–Helmholtz dominates (small W). When capillary instability
dominates, the differences in the normalized growth rate discrepancy is nearly 1/2.

(11) An exact viscous solution of a two fluid problem does not allow a velocity discontinuity.
However, the exact solution for pure capillary instability is very close to VCVPF which
we also recommend for this more general problem.
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